Pros and Cons of Mel-cepstrum Based Audio Steganalysis Using SVM Classification
نویسندگان
چکیده
While image steganalysis has become a well researched domain in the last years, audio steganalysis still lacks a large scale attentiveness. This is astonishing since digital audio signals are, due to their stream-like composition and the high data rate, appropriate covers for steganographic methods. In this work one of the first case studies in audio steganalysis with a large number of information hiding algorithms is conducted. The applied trained detector approach, using a SVM (support vector machine) based classification on feature sets generated by fusion of time domain and Mel-cepstral domain features, is evaluated for its quality as a universal steganalysis tool as well as a application specific steganalysis tool for VoIP steganography (considering selected signal modifications with and without steganographic processing of audio data). The results from these evaluations are used to derive important directions for further research for universal and application specific audio steganalysis.
منابع مشابه
Calibrated Audio Steganalysis
Calibration is a common practice in image steganalysis for extracting prominent features. Based on the idea of reembedding, a new set of calibrated features for audio steganalysis applications are proposed. These features are extracted from a model that has maximum deviation from human auditory system and had been specifically designed for audio steganalysis. Ability of the proposed system is t...
متن کاملAudio-Video based Classification using SVM and AANN
This paper presents a method to classify audio-video data into one of five classes: advertisement, cartoon, news, movie and songs. Automatic audio-video classification is very useful to audio-video indexing, content based audio-video retrieval. Mel frequency cepstral coefficients are used to characterize the audio data. The color histogram features extracted from the images in the video clips a...
متن کاملنهانکاوی صوت مبتنی بر همبستگی بین فریم و کاهش بازگشتی ویژگی
Dramatic changes in digital communication and exchange of image, audio, video and text files result in a suitable field for interpersonal transfers of hidden information. Therefore, nowadays, preserving channel security and intellectual property and access to hidden information make new fields of researches naming steganography, watermarking and steganalysis. Steganalysis as a binary classifica...
متن کاملExploring Kernels in Svm-based Classification of Larynx Pathology from Human Voice
In this paper identification of laryngeal disorders using cepstral parameters of human voice is investigated. Mel-frequency cepstral coefficients (MFCC), extracted from audio recordings, are further approximated, using 3 strategies: sampling, averaging, and estimation. SVM and LS-SVM categorize preprocessed data into normal, nodular, and diffuse classes. Since it is a three-class problem, vario...
متن کاملAudio Classification Based on Sparse Coefficients
Audio signal classification is usually done using conventional signal features such as mel-frequency cepstrum coefficients (MFCC), line spectral frequencies (LSF), and short time energy (STM). Learned dictionaries have been shown to have promising capability for creating sparse representation of a signal and hence have a potential to be used for the extraction of signal features. In this paper,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007